Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

	Б1.О.19 Теплотехника					
наименование	наименование дисциплины (модуля) в соответствии с учебным планом					
Направление подготовки / специальность 23.03.03 Эксплуатация транспортно-технологических машин и						
Направленность (прос	риль)					
Авт	омобили и автомобильное хозяйство					
Форма обучения	очная					
Год набора	2021					

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили					
канд.техн.наук, доцент, Сагалакова М.М.					
	попжность инипиалы фамилиа				

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Цель учебного курса состоит в том, чтобы дать знания студентам по технической термодинамике, теории теплообмена, основам теплотехники, необходимые для последующего изучения специальных дисциплин, а также в дальнейшей инженерной работе.

1.2 Задачи изучения дисциплины

Процесс изучения дисциплины направлен на формирование общепрофессиональной компетенции ОПК-2 — Владение научными основами технологических процессов в области эксплуатации транспортнотехнологических машин и комплексов.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование индикатора	Запланированные результаты обучения по дисциплине										
достижения компетенции											
ОПК-2: Способен осуществлять профессиональную деятельность с учетом											
экономических, экологических	экономических, экологических и социальных ограничений на всех этапах										
жизненного цикла транспортно-технологических машин и комплексов;											
OFFICA C	D T										

ОПК-2: Способен осуществлять профессиональную деятельность с учетом экономических, экологических и социальных ограничений на всех этапах жизненного цикла транспортно-технологических машин и комплексов;

В результате изучения дисциплины «Теплотехника» студент должен знать:

- основные понятия термодинамики (теплота, работа, теплоемкость, внутренняя энергия, энтальпия, энтропия);
- термодинамические процессы, их основные виды;
- первый, второй, третий законы термодинамики;
- циклы теплосиловых установок;
- понятия, законы и расчетные формулы теплопроводности, конвективного тепло-обмена, радиационного теплообмена, массообмена;
- принцип работы и устройство основных теплообменных аппаратов, тепломассо-обменных и холодильных установок;
- химический состав и технические характеристики органических топлив, основы теории горения;
- классификацию и конструкции паровых и водогрейных котлов;
- особенности теплопотребления автотранспортными предприятиями, методы его учета и контроля.

В результате изучения дисциплины «Теплотехника» студент должен знать:

- основные понятия термодинамики (теплота, работа, теплоемкость, внутренняя энергия, энтальпия, энтропия);
- термодинамические процессы, их основные виды;

- первый, второй, третий законы термодинамики;
- циклы теплосиловых установок;
- понятия, законы и расчетные формулы теплопроводности, конвективного тепло-обмена, радиационного теплообмена, массообмена;
- принцип работы и устройство основных теплообменных аппаратов, тепломассообменных и холодильных установок;
- особенности теплопотребления автотранспортными предприятиями, методы его учета и контроля.

В результате изучения дисциплины «Теплотехника» студент должен знать:

- основные понятия термодинамики (теплота, работа, теплоемкость, внутренняя энергия, энтальпия, энтропия);
- термодинамические процессы, их основные виды;
- первый, второй, третий законы термодинамики;
- циклы теплосиловых установок;
- понятия, законы и расчетные формулы теплопроводности, конвективного тепло-обмена, радиационного теплообмена, массообмена;
- определять параметры газов, паров, газовых смесей, пользоваться при этом таблицами и диаграммами;
- строить циклы теплосиловых установок и определять термодинамические характеристики циклов;
- выполнять расчеты теплопереноса в пространстве;
- вычислять температурные поля в телах классической формы при стационарном режиме теплопроводности;
- пользоваться критериальными уравнениями и справочными значениями теплофизических свойств веществ в расчетах конвективного теплообмена;
- выполнять конструктивный и поверочный тепловой расчеты теплообменных устройств;
- делать расчет горения органических топлив;
- вычислять теплопотребление автотранспортными предприятиями.
- определять параметры газов, паров, газовых смесей, пользоваться при этом таблицами и диаграммами;
- строить циклы теплосиловых установок и определять термодинамические характеристики циклов;
- вычислять температурные поля в телах классической формы при стационарном режиме теплопроводности;

- пользоваться критериальными уравнениями и справочными значениями теплофизических свойств веществ в расчетах конвективного теплообмена;
- выполнять конструктивный и поверочный тепловой расчеты теплообменных устройств;
- делать расчет горения органических топлив;
- определять параметры газов, паров, газовых смесей, пользоваться при этом таблицами и диаграммами;
- строить циклы теплосиловых установок и определять, термодинамические характеристики пиклов:
- вычислять температурные поля в телах классической формы при стационарном режиме теплопроводности;
- пользоваться критериальными уравнениями и справочными значениями теплофизических свойств веществ в расчетах конвективного теплообмена;
- выполнять поверочный тепловой расчет теплообменных устройств;

применения в практической деятельности основных понятий, законов, расчетными зависимостей указанных выше разделов теплотехники. применения в практической деятельности основных понятий, законов, расчетными зависимостей указанных выше разделов теплотехники. применения в практической деятельности основных понятий, законов, расчетными зависимостей указанных выше разделов теплотехники.

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется с применением ЭО и ДОТ

URL-адрес и название электронного обучающего курса: https://e.sfu-kras.ru/course/view.php?id=25296.

2. Объем дисциплины (модуля)

	-	e
Вид учебной работы	Всего, зачетных единиц (акад.час)	1
Контактная работа с преподавателем:	1 (36)	
занятия лекционного типа	0,5 (18)	
практические занятия	0,5 (18)	
Самостоятельная работа обучающихся:	2 (72)	
курсовое проектирование (КП)	Нет	
курсовая работа (КР)	Нет	

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

		Контактная работа, ак. час.							
№ п/п	Модули, темы (разделы) дисциплины	Занятия лекционного типа		Занятия семинарского типа Семинары и/или Практические Практические			эторные ы и/или	И	
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС
1. Te	хничекая термодинамика								
	1. Понятия термодинамической системы, рабочего тела, теплоты, работы, идеального газа, реального газа. Параметры состояния, Уравнения состояния газа.	2							
	2. Законы термодинамики	2	2						
	3. Формулировка и аналитические выражения первого закона термодинамики. Понятие и физический смысл энтропии. Изменение энтропии в различных процессах, расчетные зависимости.			4					
	4. Водяной пар и влажный воздух	2	2						
	5. Насыщенный, сухой насыщенный, перегретый водяной пар. Параметры пара. Диаграммы и таб-лицы водяного пара. Параметры влажного возду-ха: абсолютная и относительная влажность, влагосодержание, энтальпия, температура влажного термометра, температура точки росы			2					

	7	1	1	1	1	1	
6. Циклы теплосиловых установок	2	1					
7. Цикл Карно. Идеальные циклы двигателей внутреннего сгорания. Цикл газотурбинной установ-ки. Цикл паротурбинной установки. Цикл порш-невого компрессора. Цикл парокомпрессионной холодильной установки. Оценка эффективности работы тепловых машин			2				
8. Истечение и дросселирование газов и паров	2						
9. Уравнение первого закона термодинамики для потока. Адиабатное течение жидкости или газа. Скорость потока. Дросселирование			2				
10. Изучение теоретического материала, подготовкак парктическим и лавборатоным занятиям.						36	
2. Модуль 2. Основы теории тепломассообмена							
1. Теплопроводность при стационарном режиме	2						
2. Понятие теплопроводности. Механизм теплопроводности. Температурное поле. Закон Фурье. Коэффициент теплопроводности. Дифференциаль-ное уравнение теплопроводности. Условия одно-значности для процессов теплопроводности			2				
3. Нестационарные процессы теплопроводности	2						
4. Охлаждение (нагревание) неограниченной пластины. Охлаждение (нагревание) бесконечно длинного цилиндра. Охлаждение шара. Охлаждение (нагревание) тел конечных размеров, теорема о перемножении решений. Регулярный тепловой режим. Приближенные методы решения задач теплопроводности			2				
5. Конвективный теплообмен. Теплообмен излучением	2						

6. Природа конвективного теплообмен. Закон Ньютона— Рихмана. Физические свойства жидкостей. Основные законы теплового излучения: закон Планка, закон смещения Вина, закон Стефана-Больцмана, закон Ламберта, закон Кирхгофа.			2			
7. Основы теории массопереноса. Теплообменные устройства	2	1				
8. Примеры массообмена: конвекция, испарение, конденсация, диффузия. Концентрационная диффузия, закон Фика. Термическая диффузия. Бародиффузия.			2			
9. Изучение теоретического материала, подготока к практическим и лавбораторным занятиям					36	
Всего	18	6	18		72	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Луканин В. Н. Теплотехника: учебник для вузов(М.: Высш. шк.).
- 2. Шатров М. Г., Иванов И. Е., Пришвин С. А., Матюхин Л. М., Дунин А. Ю., Ерещенко В. Е., Шатров М. Г. Теплотехника: учебник для студентов вузов, обуч. по направлениям "Эксплуатация наземного транспорта и транспортного оборудования", "Эксплуатация транспортных средств", "Эксплуатация транспортно-технологических машин и комплексов" (Москва: Академия).
- 3. Кудинов В. А., Карташов Э. М., Стефанюк Е. В. Теплотехника: Учебное пособие(Москва: ООО "КУРС").
- 4. Апальков А.Ф. Теплотехника: учебное пособие(Ростов н/Д: Феникс).
- 5. Немченко Н.И., Жальских Н.С., Баранова Я.В. Теплотехника. Лабораторный практикум: методические указания(Абакан: КГТУ).
- 4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):
- 1. В учебном процессе не используется.

4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:

- 1. Электронная библиотечная система «СФУ».
- 2. Электронная библиотечная система «ИНФРА- М».
- 3. Электронная библиотечная система «Лань».
- 4. Электронная библиотечная система «Национальный цифровой ресурс «Руконт».
- 5. Научная библиотека СФУ предоставляет доступ к ЭБС «ИНФРА- М», «Лань», «Национальный цифровой ресурс «Руконт», рекомендованным для использования в выс-ших учебных заведениях.
- 6. Интернет-библиотека http://www.twirpx.com/files/tek/
- 7. Интернет-библиотека http://www.iglib.ru
- 8. Электронная библиотека ХТИ филиал СФУ.

9.

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Лекции могут быть прочитаны в форме презентации PowerPoint с применением интерактивной доски.

Лабораторное оборудование, установленное в кабинете Б-309:

- установка в сборе для определения теплоемкости воздуха;
- психрометр, барометр, диаграмма влажного воздуха;
- установка в сборе для определения теплопроводности твердого материала методом шара;
- установка в сборе для определения коэффициента теплоотдачи при свободной конвекции

воздуха около горизонтального цилиндра;

- установка в сборе для изучения работы чугунного радиатора;
- сушильный шкаф;
- муфельная печь;
- аналитические весы;
- модель барабанного парового котла.
- калориметр для определения теплоты сгорания твердого топлива

Для чтения лекций аудитория Б-214 оборудована демонстрационным устройством, включающим компьютер, экран. Самостоятельная работа студентов может осущекствляться в кабинетах Б-214, Б-303, читальном зале №2, .В кабинетах установлена компьютерная техника, имеется возможность подключения к сети "Интернет".

Ниже приводятся наименования специальных помещений и помещений для самостоятельной работы, их оснащенность, а также перечень лицензионного программного обеспечения и реквизиты подтверждающего документа.

655017 Республика Хакасия, г.Абакан, ул. Комарова, д.15 Лабораторный корпус "Б" 214

Аудитория 219 - лекционная. Рабочее место преподавателя; рабочие места обучающихся; мультимедийная дос-ка, системный блок с проек-тором (с предустановленным программным обеспечением) ОС Windows (Microsoft Imagine Premium 6b7c117d-8ae7-4533-93af-058cc93b8bf5 с 03.01.17 по 03.01.20), пакет прикладных программ MS Office (ver 12.0.6612.1000 авторизионный номер лицензии 63091073ZZE0912 Номер лицензии 43158512 от 04.12.2007), веб-браузеры

ерсональными компьютерами:

Intel(R) Core(TM) i5-3470 CPU/H61M-DS2 DVI(Gigabyte Technology Co., Ltd.) MB/4Gb RAM/ 750Gb HDD/ 19" ViewSonic VA1916w-6 Kaspersky Endpoint Security 10 для Windows (ver 10.3.0.6294 № 1B08-170222-020109-430 -193 с 22.02.2017), Microsoft Office профессиональный плюс 2007 (ver 12.0.6612.1000 авторизионный номер лицензии 63091073ZZE0912 Номер лицензии 43158512 от 04.12.2007), Microsoft Visio профессиональный 2010 (Ver 14.0.7015.1000 № Microsoft Imagine Premium 6b7c117d-8ae7-4533-93af-058cc93b8bf5 с 03.01.17 по 03.01.20), Microsoft Visual Basic 2008, экспрессвыпуск - пакет обновления 1 (SP1) – RUS (Microsoft Imagine Premium 6b7c117d-8ae7-4533-93af-058cc93b8bf5 с 03.01.17 по 03.01.20), OS Microsoft Windows 7 Профессиональная (Microsoft Imagine Premium 6b7c117d-8ae7-4533-93af-058cc93b8bf5 с 03.01.17 по 03.01.20)